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Abstract
Sequential recommendation aims to predict users’ future interac-
tions by modeling collaborative filtering (CF) signals from historical
behaviors of similar users or items. Traditional sequential recom-
menders predominantly rely on ID-based embeddings, which cap-
ture CF signals through high-order co-occurrence patterns. How-
ever, these embeddings depend solely on past interactions, lacking
transferable knowledge to generalize to unseen domains. Recent ad-
vances in large language models (LLMs) have motivated text-based
recommendation approaches that derive item representations from
textual descriptions. While these methods enhance generalization,
they fail to encode CF signals—i.e., latent item correlations and pref-
erence patterns—crucial for effective recommendation. We argue
that an ideal embedding model should seamlessly integrate CF sig-
nals with rich semantic representations to improve both in-domain
and out-of-domain recommendation performance.

To this end, we propose LLM2Rec, a novel embedding model
tailored for sequential recommendation, integrating the rich se-
mantic understanding of LLMs with CF awareness. Our approach
follows a two-stage training framework: (1) Collaborative Super-
vised Fine-tuning, which adapts LLMs to infer item relationships
based on historical interactions, and (2) Item-level Embedding Mod-
eling, which refines these specialized LLMs into structured item
embedding models that encode both semantic and collaborative
information. Extensive experiments on real-world datasets demon-
strate that LLM2Rec effectively improves recommendation quality
across both in-domain and out-of-domain settings. Our findings
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highlight the potential of leveraging LLMs to build more robust, gen-
eralizable embedding models for sequential recommendation. Our
codes are available at https://github.com/HappyPointer/LLM2Rec.
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1 Introduction
Sequential recommendation aims to predict users’ future interac-
tions by learning high-quality item representations that effectively
capture both user preference patterns and item inherent content
[41, 60]. Conventional sequential recommenders typically assign
unique identifiers (IDs) to items and learn corresponding represen-
tations based on historical user interaction sequences [12, 15, 43, 44,
57, 64]. These ID-based representations primarily encode collabora-
tive filtering (CF) signals by solely modelingmulti-hop co-occurring
patterns in sequential trajectories [10, 51]. While effective, such
recommenders lack item content information, making them highly
domain-dependent and unable to generalize to unseen items or
new domains [59, 60, 65]. We argue that high-quality item represen-
tations in sequential recommender systems must simultaneously
encapsulate item semantics and CF signals.

Recent advances in large language models (LLMs) have moti-
vated extensive research into leveraging rich semantic information
for improved item representation learning, including purely text-
based representations [14, 22, 41] and hybrid representations that
fusing semantic and CF signals [13, 30, 40]. Purely text-based rec-
ommenders extract item representations from pre-trained language
models, offering strong generalization capabilities but disregarding
CF signals. To mitigate this limitation, hybrid methods attempt
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Figure 1: An illustrating example that pre-trained language
models ignore CF signals and the embedding distributions
in different training stages of LLM2Rec. (a) The behaviorally
correlated Mario Party and Animal Crossing are close in ID
embeddings but distinct in text embeddings. (b) Pre-trained
language models failed to discover the behaviorally simi-
lar items. (c) Collaborative Supervised Fine-Tuning enables
the LLM to capture the CF signals. (d) Item-level embedding
modeling preserves CF signals while producing more distin-
guishable embeddings.

to integrate both semantic and CF signals through various fusion
strategies, including directly concatenating ID-based and seman-
tic representations [45, 54, 60], guiding ID-based representation
learning with content features [40, 53], adopting hybrid fusion ar-
chitectures [29, 30], and tuning embedding models to bridge CF
and semantic spaces [13, 39]. However, fusion-based techniques,
whether simple concatenation or sophisticated mechanisms like
cross-attention, struggle to learn a unified representation space,
leading to misalignment between item semantics and user behavior
spaces. We believe that developing a general embedding model for
sequential recommendation-one that inherently captures both CF
and semantic knowledge-is a more promising yet underexplored re-
search direction. While recent efforts have attempted to construct
unified embedding models that align item semantics with user
behavior spaces through contrastive pre-training [13, 39], these
methods typically require large-scale training samples and pro-
hibitively large batch sizes to effectively encode CF signals. More
critically, they fail to fully leverage the strong semantic understand-
ing and reasoning capabilities of state-of-the-art LLMs, such as
Qwen [58] and Llama [46]. This motivates us to investigate how
LLMs can be adapted to serve as generalizable embedding models
for recommendation.

To develop a recommendation-specialized embedding model
with strong generalization to unseen domains, we aim to integrate
the powerful semantic understanding capability of LLMs with the
ability to capture CF signals. Motivated by recent studies demon-
strating that LLMs can effectively learn recommendation tasks
through supervised fine-tuning [1, 2, 6, 25, 28, 62], we leverage this
approach to make LLMs aware of the CF signals from user interac-
tion sequences. To further facilitate the transition of the LLM from

token-level prediction to item-level embedding generation [3, 18],
we refine the CF-aware LLM into a structured recommendation
embedding model with additional item-level embedding modeling.

To this end, we introduce LLM2Rec, a recommendation embed-
ding model built upon the LLM that is explicitly aware of the CF
signals. Specifically, our training framework includes two stages:
(1) Collaborative Supervised Fine-Tuning (CSFT) and (2) Item-level
Embedding Modeling (IEM). In the first stage, CSFT fine-tunes
the LLM on a mixture of six real-world recommendation datasets,
enforcing it to predict the next item based on the historical in-
teraction sequence. As illustrated in Figure 1, the embeddings of
several games in the Nintendo series are initially scattered. As these
games are frequently co-purchased by users with similar prefer-
ences, their embeddings become closely clustered after CSFT. This
shift indicates that the LLM learns to capture CF signals through
CSFT. In the second stage, we enable bidirectional attention with
Masked Next Token Prediction (MNTP) and apply item-level con-
trastive learning to further facilitate the LLM to be an embedding
model. Bidirectional attention enables capturing contextualized
information within item titles [3] and MNTP helps the LLM adapt
to the newly introduced bidirectional attention mask. Item-level
contrastive learning explicitly shifts the pre-training objective from
token-level to item-level, helping to generate distinguishable item
embeddings and yet preserve the CF signals. Both MNTP and item-
level contrastive learning are lightweight adaptations incurring
slight computational costs while remaining effective. As presented
in Figure 1, the embeddings of Nintendo games remain close while
becoming more differentiated, offering richer and more effective
information for recommendation.

To assess the effectiveness of LLM2Rec, we conduct extensive
experiments on both in-domain and out-of-domain datasets using
various downstream sequential recommenders. Experimental re-
sults show that LLM2Rec consistently outperforms the existing em-
bedding models across both in-domain and out-of-domain datasets.
Additionally, the generalization ability of the embedding model ben-
efits from training on mixed datasets spanning diverse categories.
These findings underscore the potential of LLMs as inherently pow-
erful embedding models for sequential recommendation.

2 Related Work
In this section, we briefly review the works related to this paper
from two main categories: 1) sequential recommendation, and 2)
embedding models.

2.1 Sequential Recommendation
Sequential recommendation learns item representations to predict
items that users are likely to interact with in the future. From the
item representation learning perspective, existing methods can be
broadly categorized into three paradigms: ID-based methods, pure
text-based methods, and hybrid ID-text methods.
ID-based methods assign each item a unique identifier and learn
the corresponding representation using various sequence model-
ing techniques, like recurrent neural networks [12], convolutional
neural networks [44], and transformer-based architectures [15, 64].
With these techniques, ID-based methods capture item correlations
and user interests from user interaction sequences. Despite the



LLM2Rec: Large Language Models Are Powerful Embedding Models for Sequential Recommendation KDD ’25, August 3–7, 2025, Toronto, ON, Canada

effectiveness, these methods are not capable of handling tasks from
unseen domains or unseen items, lacking generalizability.
Pure text-based methods represent items with text embeddings
derived from item contents, such as titles or profiles, using pre-
trained language models as text encoders. Within the unified lan-
guage space, these methods have the potential to generalize to
unseen domains [14, 22, 41]. However, their effectiveness is largely
limited by the adopted embedding model due to their heavy re-
liance on text embeddings. Moreover, these pre-trained language
models are general for language tasks rather than specialized for
recommendation, resulting in suboptimal performance as well.
Hybrid ID-text methods generate representation by incorporat-
ing both ID and textual information. Common techniques include
(1) using text embeddings to guide or enhance the learning of ID
representations [27, 29, 40, 52, 53, 56], (2) concatenating text and ID
embeddings [31, 45, 54, 60], and (3) fusing ID and text information
through attention architectures [30]. While these methods leverage
textual information to improve representation learning, they still
rely on ID-based embeddings, indicating that their effectiveness
remains highly dependent on dataset-specific training. As a result,
similar to purely ID-based methods, hybrid approaches must be
trained on the target domain to learn effective representations,
limiting their ability to generalize to new domains [59, 60, 65].

2.2 Embedding Models
Pre-trained embedding models play a fundamental role in various
downstream tasks, including information retrieval [16, 26, 34], text
similarity [4], and classification [7, 11]. Existing approaches can
be broadly categorized into two main types: 1) Language encoder
models with bidirectional attention and 2) LLM-based embedding
models. Language encoder models have long been the dominant
approach for learning text embeddings. These models leverage
transformer architectures with bidirectional attention, allowing
them to capture richer contextual relationships and produce more
effective sentence embeddings [17, 20, 32]. Their training objectives
include next sentence prediction [17], masked language modeling
[17, 32], and contrastive learning techniques [8, 23, 38, 49], which
has gained significant popularity for its effectiveness in producing
high-quality sentence embeddings. LLM-based embedding methods
have gained increasing popularity with the growing capabilities
of large language models (LLMs). The straightforward approaches
generate sentence embeddings directly from the last hidden states
of decoder-only LLMs, either by using the hidden state of the EOS
token or by average pooling the hidden states of all tokens in the
sentence [35, 42, 50]. However, directly using pre-trained LLMs as
embedding models without additional training leads to suboptimal
performance, as they are optimized for predicting future tokens
rather than generating holistic sentence representations. To address
this limitation, recent approaches focus on adapting LLMs into
dedicated embedding models with further adaption [3, 18, 19, 21,
24, 36]. Common techniques include sentence-level contrastive
learning and attention mask modifications, both of which enhance
LLMs’ effectiveness as embedding models.

In recommendation tasks, the implicit relationships between
items, known as CF signals, are also important alongside semantic

understanding. An effective embedding model for recommenda-
tion should integrate both to maximize performance. While most
sequential recommenders rely on general embedding models, some
initial efforts attempt to develop recommendation-specific embed-
dings. Blair [13] aligns representations of user reviews with item
titles using contrastive learning on over 30 million instances across
33 categories from the Amazon platform. EasyRec [39] aligns user
representations with their interacted items and further incorpo-
rates diverse user and item profiling in contrastive learning. How-
ever, both methods constrain their backbone embedding model
to smaller ones like BERT [17] or RoBERTa [32] due to the high
computational cost of contrastive learning, which requires large
batch sizes and sufficient training iterations. Recently, LLMEmb [29]
extends recommendation-specific embedding models by leverag-
ing large language models. It adopts attribute-level augmentations
and aligns augmented views of the same item to enhance the gen-
erated embeddings. LLMEmb primarily treats LLMs as powerful
semantic encoders and does not explicitly integrate CF signals into
the learned embeddings. In contrast, our approach fuses CF sig-
nals into LLMs through collaborative supervised fine-tuning. With
the following enhancements of lightweight item-level embedding
adaptation, LLM2Rec achieves superior recommendation-specific
embeddings while maintaining computational efficiency.

3 Methodology
In this section, we first elaborate on the problem formulation of
utilizing embedding models for sequential recommendation tasks.
After that, we introduce the crux of LLM2Rec, consisting of collab-
orative supervised fine-tuning and item-level embedding modeling.
At the end, we elaborate the optimization of LLM2Rec, followed
by its utilization for downstream sequential recommenders. The
overall framework is depicted in Figure 2.

3.1 Problem Formulation
3.1.1 Sequential Recommendation. We have a set of items I, and
user interaction sequence 𝑋 , constructing the dataset D = {I, 𝑋 }.
Wherein, each element denotes an item sequence {𝑖1, 𝑖2, . . . , 𝑖𝑁𝑢

};
𝑁𝑢 is the number of the interaction items for a specific user 𝑢. In
our setting, these items are typically represented by their titles.
The goal of sequential recommendation is to predict the next item
𝑖𝑁𝑢+1 given the previous interactions 𝑖<𝑁𝑢

. Here we hope to ob-
tain a sequential recommender 𝑅(𝑖<𝑁𝑢

) that is capable to capture
the user intention hidden within the previous interaction and fi-
nally inferring the preferred next item. Formally, we denote it as
𝑝 (𝑖𝑁𝑢+1 |𝑖<𝑁𝑢

) = 𝑅(𝑖<𝑁𝑢
) .

3.1.2 Recommendation Embedding Modeling. In this work, we fo-
cus on elevating the sequential recommenders via adapting a well-
trained embedding model E(·). Given training datasets Dtrain =

{D𝑘 }𝑛𝑘=0, the embedding model is capable of generating effec-
tive embedding for testing datasets (i.e., out-of-domain datasets)
Dtest = {D𝑛+𝑗 }𝑚𝑗=0. E(·) can accept the textual description of item
sequence, i.e., {t𝑖 := [𝑡𝑖1, 𝑡

𝑖
2, . . . , 𝑡

𝑖
ℓ𝑖
]}<𝑁𝑢

), or a single item; ℓ𝑖 the
token length of item 𝑖 . Accordingly, leveraging such an embedding
model, we can obtain item embedding via z𝑖 = E(t𝑖 ). Note that, in
text-based recommendation, the above methods typically adopt a
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Figure 2: Illustration of the overall pre-training framework of LLM2Rec and how the generated embeddings are utilized for
downstream sequential recommenders. LLM2Rec employs a two-stage training strategy: first, adapting LLMs to infer item
relationships from previous interactions, namely, collaborative instruction fine-tuning (left); second, reforming specialized
LLMs for item-level embeddings with two training objectives (middle). By encoding both semantic and CF information,
generated embeddings bolster the exiting recommenders via a lightweight adapter (right).

pre-trained text encoder E∗ (·) to extract the semantics in a latent
space. Thus, we can reformulate the sequential recommendation
by explicitly involving the embedding modeling:

𝑝 (𝑖𝑁𝑢+1 |𝑖<𝑁𝑢
) = 𝑅(z𝑖<𝑁𝑢

),∀z𝑖 = E(i) . (1)

3.2 Collaborative Supervised Fine-tuning
We adapt LLM for sequential recommendation tasks via supervised
fine-tuning with collaborative information, i.e., user-item interac-
tions. First, we construct the recommendation instructions that take
the user previous interactions as input, and set the next item as the
label. This formulation follows the LLM’s inherent autoregressive
generation manner; and our goal is to enable LLMs to perform
recommendations with collaborative instructions.

Input:
Logitech G13 Gameboard,
Tamron 70-200mm Camera Lens (Nikon) ,
Pelican SD Card Case,
YONGNUO Flash Trigger (Canon) ,
TAKSTAR SGC-598 Microphone,
STK EN-EL3e Charger for Nikon Camera ,
VGA to HDMI Cable,
Allstate 2-Year Protection Plan,
BLACKRAPID Lock Star Cover.

Output: Neewer Wireless Flash Trigger for Camera

Figure 3: An example of the collaborative instruction for
fine-tuning.

As aforementioned, we represent items with textual information
(e.g., titles), denoted as t𝑖 := [𝑡𝑖1, 𝑡

𝑖
2, . . . , 𝑡

𝑖
ℓ𝑖
], where 𝑡 is the token

indices; the user interactions can be represented as the concate-
nated item sequence, t𝑢 := [i1, i2, . . . , i𝑁𝑢

]. As shown in Figure 3,
the input instruction is a series of items (i.e., movie titles), followed
by the next item title as the desired output. The CF signals manifest
by these highlighted item correlations (the darker the color, the
more similar with the target items). To mitigate the influence of
the template, which introduces hidden states irrelevant to the cur-
rent item representation, we only retrain the item titles with some
necessary separators, like commas. With such type of collaborative
instructions, we employ the objective to predict the tokens within
the next item autoregressively:

LCSFT = −
∑︁
(𝑢,𝑖 ) ∈𝑋

ℓ𝑖∑︁
𝑠=0

𝑝 (t𝑖,𝑠 |t𝑢 , t𝑖,<𝑠 ), (2)

where 𝑠 denotes the current step. This step is simple yet essential
to unlock the capability of LLM for recommendation and bolsters
the following embedding modeling.

3.3 Item-level Embedding Modeling
Decoder-only LLMs are designed for autoregressive prediction,
making them less effective at generating high-quality embeddings,
a task typically suited for encoder models. However, LLMs exhibit
stronger semantic understanding ability compared to traditional
bidirectional encoder methods [3, 18]. Some works [5, 61, 63] pro-
pose utilizing the last hidden state of the token to represent the
given text, serving as an alternative to use LLMs. However, we
hope to reap both benefits of decoder-only LLM’s knowledge and
encoder models’ architecture, thus reforming LLMs for item-level
embedding modeling.

3.3.1 Reforming Decoder-only LLM to Encoder. The key differences
that distinguish the encoder and decoder language models lie in
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causal attention and training objective. Inspired by remarkable lan-
guage encoders [17, 21] and recent attempts on utilizing LLM as
general embedding models [3, 24], we equip the fine-tuned LLMs
with bidirectional attention and masked next token prediction opti-
mization (MNTP).
Causal → Bidirectional attention. Causal attention restricts
access to information from later tokens when generating token
embeddings. While this is essential for prediction tasks, embedding
models require visibility of both preceding and succeeding tokens
to capture comprehensive contextual details. Motivated by this,
we cancel the causal attention mask, enabling prediction based
on the item-level past and future context (i.e., bidirectionally). To
adapt model parameters for the newly introduced architecture,
we impose an additional training stage with masked next token
prediction (MNTP). Given an item sequence as input, we randomly
mask tokens with a pre-defined fraction, then train LLMs with
masked next token prediction task:

LMNTP = −
∑︁
𝑖∈I

ℓ𝑖∑︁
𝑠=0

𝑝 (t𝑖,𝑠 |t𝑖,<𝑠 ) . (3)

The parameters of LLM that are trained with sequential recom-
mendation tasks in causal attention, followed by MNTP tasks in
bidirectional attention. Notably, this stage focuses solely on the
information within a single item, aligning with the tuning of LLMs
for item-level embeddings. In contrast, CSFT captures relationships
between different items within user interaction sequences.

3.3.2 Item-level Contrastive Learning. Token-level embeddingmod-
eling is developed with architecture modification and MNTP opti-
mization; however, we hope to generate item-level embedding,
which is more prevailing and intuitive for downstream recom-
menders. The straightforward solution can be a direct average-
pooling of token-level embeddings. Specifically, for item 𝑖 , the item
embeddings can be represented as z𝑖 = 1/ℓ𝑖

∑
𝑗∈[ℓ ] z

𝑗
𝑖
. Hence, the

embedding model can be the composition of such average pooling
operation and our modified LLMmodel 𝜋𝜃 , and formally denoted as
E := avg ◦ 𝜋𝜃 . In this work, we further enhance this by employing
item-level contrastive learning.
Token→ Item level embedding. The input item t𝑖 is passed
through LLM model twice with random masking independently,
yielding two views of the same item (i.e., t̃1i and t̃2i ). Following the
unsupervised contrastive learning paradigm [8], we optimize the
parameters via:

LIC = −
∑︁
𝑖∈I

log

(
E(t̃1i )E(t̃

2
i )
⊤/𝜏

)
∑

𝑗∈I
(
E(t̃1j )E(t̃

2
j )⊤/𝜏

) , (4)

where 𝜏 is the temperature ratio. With this objective, item embed-
dings are learned via a holistic view and contrasted with others
to enhance their distinctiveness. The differentiation induced by
contrastive learning aligns well with a series of recommendation
methods [55, 57], providing a stronger foundation for downstream
sequential recommenders.

3.4 Optimization & Utilization
Training LLM2Rec. We train the LLMs in a sequential manner,
from collaborative supervised fine-tuning (LCSFT) to item-level

embedding modeling (LMNTP and LIC). The model architecture
is modified in the second stage, reforming causal attention to the
bidirectional. This training strategy progressively enhances the
LLMs’ capabilities, featuring them to capture both semantic and CF
information for recommendation.
Empowering downstream recommenders. After the training
of LLM2Rec, we introduce the utilization of embeddings generated
from LLM2Rec to bolster the existing sequential recommenders.
Most sequential recommenders obtain their item embeddings from
scratch or initialize them as trainable parameters updated along
with the training [12, 15]. In this work, we provide a simple solution
via an additional linear adapter: z′

𝑖
= wz𝑖 +b, wherew and b are the

weight and bias matrices. We use these transformed embeddings as
item representations. Notably, the parameters is optimized through
downstream recommenders’ objective for adaption. By inducing
slight parameters, this linear transformation is capable of adapting
our generalizable embeddings for various domains.

4 Experiments
In this section, we present the experimental results and correspond-
ing analysis to answer the following research questions (RQs).

• RQ1: How effective is our proposed LLM2Rec compared with
other embedding models, including general and specialized ones?
• RQ2: How does each training stage or modification contribute
to the performance of LLM2Rec?
• RQ3:What are the key properties of LLM2Rec?

4.1 Experiment Settings
We systematically present the details of datasets, evaluation met-
rics, the baselines embedding models for comparison, downstream
sequential recommenders used for evaluation, as well as the imple-
mentation details.

4.1.1 Datasets and Evaluation Metrics. We elaborate on the se-
lected datasets for pre-training embedding model and downstream
sequential recommendation tasks, followed by descriptions of the
evaluation metrics.

Pre-training datasets. Following prior works [13, 39], our em-
bedding model is pre-trained on a mixture of six datasets collected
from the Amazon platform [13]. These datasets span diverse cate-
gories, including Video Games (Games), Arts, Crafts, and Sewing
(Arts), Movies and TV (Movies), Home and Kitchen (Home), Elec-
tronics (Electronics), and Tools and Home Improvement (Tools).
The datasets consist of user interactions spanning from June 1996
to September 20231. For all six training datasets, we apply 5-core
filtering and limit the maximum historical interaction sequence
length to 10. The datasets are partitioned into training, validation,
and test sets using the leave-one-out strategy, where the last two
interactions in each user sequence are reserved for validation and
testing, respectively. Only the training data is used for pre-training
LLM2Rec, while the validation and test sets are reserved for down-
stream evaluation. Detailed statistics of each pre-training dataset
are listed in Table 1.

1https://amazon-reviews-2023.github.io/

https://amazon-reviews-2023.github.io/
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Table 1: The statistics of the pre-training datasets.

Dataset #Items #Interactions

Games 9,517 153,221
Arts 12,454 132,566
Movies 13,190 136,471
Home 33,478 256,001
Electronics 20,150 197,984
Tools 19,964 159,969

Total 108,753 1,035,212

Table 2: The statistics of the in-domain and out-of-domain
datasets used in downstream sequential recommendation.

Dataset #Items #Interactions Train Val&Test

Games 9,517 153,221 122,577 15,322
Arts 12,454 132,566 106,052 13,257
Movies 13,190 136,471 109,177 13,647

Sports 13,952 136,740 109,392 13,674
Baby 6,837 97,899 78,319 9,790
Goodreads 4,550 158,347 137,069 10,639

Downstream sequential recommendation datasets. For down-
stream sequential recommenders utilizing the generated embed-
dings, we train and test the downstream recommenders on the
same datasets with identical data splits as used in pre-training.
Specifically, we present experimental results on three datasets:
Games, Arts, and Movies. To further evaluate the generalization
ability of LLM2Rec to unseen domains, we additionally include
three more out-of-domain datasets that differ significantly from the
pre-training data. Specifically, we select Sports, Baby [13] from
Amazon, which contain items from categories absent in the training
set. We further evaluate our embedding model on cross-platform
dataset: Goodreads2 [47, 48]. Detailed statistics of downstream
sequential recommendation datasets are presented in Table 2.

Evaluation Mertrics. We follow the prior works [9, 13, 39] and
perform full ranking with all items in the dataset as potential candi-
dates during evaluation. The performance of the recommenders is
evaluated with the Recall@𝑘 and NDCG@𝑘 , where 𝑘 ∈ {10, 20}. To
ensure the reliability of experimental results and mitigate the im-
pact of unavoidable randomness during downstream recommender
training, all reported performances in this section are averaged
over three runs with different random seeds.

4.1.2 Baselines and Downstream Recommenders. For baseline em-
bedding models, we compare LLM2Rec with a diverse set of models,
including both general-purpose and recommendation-specific mod-
els. The general embedding models include BERT, GTE [24], BGE
[21], and LLM2Vec [3]. The recommendation-specific models in-
clude EasyRec [39], BLAIR [13], and LLMEmb [29].

These embedding models provide better initialization for item
representation learning and can be integrated into various sequen-
tial recommenders. To evaluate their effectiveness, we test these
embedding models on two different sequential recommender ar-
chitectures: GRU4Rec [12], and SASRec [15]. We leave detailed

2https://cseweb.ucsd.edu/~jmcauley/datasets/goodreads.html

introductions to each embedding model and downstream sequential
recommenders in Appendix A.2.

4.1.3 Implementation Details. Our LLM2Rec is initialized with a
pre-trained LLM. Unless otherwise specified, all experimental re-
sults reported for LLM2Rec in this paper are based on the Qwen2-
0.5B backbone. In the first collaborative supervised fine-tuning
stage, we utilize the AdamW optimizer [33] with learning rate set
to 3𝑒−4. The model is fully fine-tuned with all parameters open for
10,000 steps with the effective batch size set to 128. Then for the
masked next token prediction, following the established setting of
prior works [3, 17], we randomly mask 20% of the input tokens and
adopt the same hyperparameter settings as LLM2Vec [3]. The model
is only fine-tuned for 1,000 steps with the effective batch size set to
32, which takes less than 2 hours on one single Nvidia A40 GPU.
Finally, for item-level contrastive learning, item representations are
augmented with dropout rate set to 0.2 and contrastive learning
temperature 𝜏 set to 0.2. The model is optimized with AdamW opti-
mizer for 1,000 steps with learning rate set to 2𝑒−4 and effective
batch size set to 256.

For downstream recommenders, all models are trained using
cross-entropy loss with AdamW optimizer. To ensure fair com-
parisons across different embedding models, we use a fixed set of
hyperparameters for each recommender while varying only the
text embeddings. The learning rate is set to 1𝑒−3 for SASRec and
1𝑒 −4 for GRU4Rec. Across all three recommenders, the weight
decay is fixed at 1𝑒−4, dropout out rate at 0.3, and the extracted
text embeddings are projected to 128 dimensions using a trainable
linear layer. The recommenders are trained for up to 500 epochs
with an early stopping mechanism, which terminates training if
the validation performance does not improve for 20 consecutive
epochs. Experiments in this paper are conducted on 4 Nvidia A40
(48G) GPUs.

4.2 Performance Comparison (RQ1)
We evaluate the effectiveness of our proposed LLM2Rec using two
downstream sequential recommenders on three in-domain and
three out-of-domain datasets. The comprehensive results, presented
in Table 3, reveal the following key observations.

LLM2Rec consistently outperforms all baseline models across
both recommenders on all datasets. For the in-domain datasets, it
achieves an average relative improvement of 15% on Games and
Arts, and over 7% on Movies. The significant performance gain
has well demonstrated the LLM2Rec’s ability to effectively capture
collaborative filtering signals that significantly enhance sequential
recommendation performance. More importantly, LLM2Rec also
excels on out-of-domain datasets, which consist of item categories
absent from the pre-training data. Even on Goodreads, which differs
from the training set in both item categories and source platform,
LLM2Rec maintains a moderate yet consistent performance gain.
The strong results on out-of-domain datasets indicate that training
on a diverse set of recommendation datasets can bring both CF
awareness and generalization ability to unseen domains. These
findings highlight the potential of LLMs as generalizable embedding
models for recommendation.

https://cseweb.ucsd.edu/~jmcauley/datasets/goodreads.html
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Table 3: Performance comparison of different embedding methods under in-domain and out-of-domain datasets. R is shorts for
Recall, N is short for NDCG, and %Improv. indicates the relative improvement compared to the strongest baselines.

In-Domain Datasets

Models
Games Arts Movies

R@10 N@10 R@20 N@20 R@10 N@10 R@20 N@20 R@10 N@10 R@20 N@20

GRU4Rec

BERT 0.0365 0.0184 0.0573 0.0236 0.0363 0.0191 0.0559 0.0240 0.0243 0.0126 0.0383 0.0160
GTE 0.0540 0.0290 0.0792 0.0353 0.0348 0.0185 0.0569 0.0240 0.0396 0.0195 0.0583 0.0242
BGE 0.0491 0.0261 0.0760 0.0329 0.0413 0.0221 0.0632 0.0276 0.0379 0.0187 0.0587 0.0239
LLM2Vec 0.0540 0.0286 0.0784 0.0348 0.0473 0.0274 0.0678 0.0325 0.0370 0.0187 0.0557 0.0234
BLAIR 0.0455 0.0245 0.0713 0.0309 0.0416 0.0233 0.0639 0.0289 0.0379 0.0188 0.0583 0.0239
EasyRec 0.0450 0.0235 0.0700 0.0298 0.0436 0.0232 0.0643 0.0284 0.0356 0.0180 0.0551 0.0229
LLMEmb 0.0544 0.0298 0.0775 0.0357 0.0480 0.0277 0.0673 0.0325 0.0377 0.0196 0.0538 0.0236

LLM2Rec 0.0624 0.0344 0.0874 0.0408 0.0590 0.0366 0.0802 0.0419 0.0419 0.0214 0.0595 0.0258
%Improv. 14.76% 15.46% 10.35% 14.31% 22.83% 32.32% 18.16% 29.03% 5.92% 9.46% 1.46% 6.77%

SASRec

BERT 0.0585 0.0311 0.0863 0.0381 0.0650 0.0405 0.0869 0.0460 0.0447 0.0240 0.0646 0.0290
GTE 0.0641 0.0349 0.0911 0.0418 0.0644 0.0394 0.0880 0.0454 0.0570 0.0300 0.0817 0.0363
BGE 0.0733 0.0410 0.1022 0.0483 0.0748 0.0475 0.1006 0.0540 0.0626 0.0350 0.0847 0.0406
LLM2Vec 0.0740 0.0407 0.1029 0.0480 0.0770 0.0506 0.1007 0.0566 0.0662 0.0384 0.0874 0.0438
BLAIR 0.0654 0.0361 0.0954 0.0437 0.0648 0.0379 0.0906 0.0444 0.0581 0.0315 0.0801 0.0370
EasyRec 0.0647 0.0357 0.0926 0.0428 0.0658 0.0395 0.0929 0.0463 0.0528 0.0278 0.0739 0.0331
LLMEmb 0.0813 0.0487 0.1085 0.0555 0.0865 0.0601 0.1086 0.0657 0.0659 0.0390 0.0837 0.0435

LLM2Rec 0.0865 0.0521 0.1157 0.0595 0.0925 0.0637 0.1142 0.0692 0.0705 0.0429 0.0895 0.0477
%Improv. 6.42% 6.92% 6.70% 7.04% 6.95% 5.97% 5.16% 5.29% 6.49% 10.01% 2.40% 9.13%

Out-Of-Domain Datasets

Models
Sports Baby Goodreads

R@10 N@10 R@20 N@20 R@10 N@10 R@20 N@20 R@10 N@10 R@20 N@20

GRU4Rec

BERT 0.0335 0.0183 0.0499 0.0224 0.0111 0.0050 0.0252 0.0086 0.0851 0.0412 0.1226 0.0506
GTE 0.0295 0.0147 0.0459 0.0188 0.0226 0.0116 0.0340 0.0145 0.1169 0.0599 0.1701 0.0733
BGE 0.0489 0.0281 0.0685 0.0330 0.0252 0.0131 0.0364 0.0158 0.1072 0.0585 0.1517 0.0697
LLM2Vec 0.0663 0.0464 0.0810 0.0501 0.0254 0.0138 0.0362 0.0165 0.1174 0.0655 0.1643 0.0773
BLAIR 0.0537 0.0316 0.0735 0.0366 0.0207 0.0099 0.0316 0.0127 0.0939 0.0496 0.1339 0.0596
EasyRec 0.0492 0.0270 0.0674 0.0315 0.0207 0.0105 0.0275 0.0122 0.0951 0.0477 0.1364 0.0581
LLMEmb 0.0705 0.0482 0.0861 0.0521 0.0252 0.0136 0.0378 0.0168 0.1219 0.0701 0.1667 0.0814

LLM2Rec 0.0828 0.0632 0.0948 0.0662 0.0327 0.0181 0.0463 0.0216 0.1299 0.0761 0.1738 0.0872
%Improv. 17.50% 31.18% 10.07% 27.06% 28.55% 31.61% 22.32% 28.51% 6.58% 8.68% 2.17% 7.15%

SASRec

BERT 0.0860 0.0649 0.1017 0.0689 0.0114 0.0050 0.0232 0.0080 0.1479 0.0858 0.1929 0.0972
GTE 0.0823 0.0584 0.1001 0.0629 0.0264 0.0142 0.0387 0.0173 0.1488 0.0851 0.1944 0.0967
BGE 0.0974 0.0736 0.1141 0.0778 0.0428 0.0250 0.0569 0.0286 0.1445 0.0813 0.1972 0.0945
LLM2Vec 0.1079 0.0854 0.1234 0.0893 0.0561 0.0339 0.0722 0.0379 0.1424 0.0790 0.1906 0.0911
BLAIR 0.0893 0.0614 0.1091 0.0664 0.0332 0.0180 0.0484 0.0218 0.1508 0.0860 0.2000 0.0984
EasyRec 0.0887 0.0627 0.1061 0.0671 0.0271 0.0154 0.0381 0.0182 0.1445 0.0825 0.1908 0.0941
LLMEmb 0.1131 0.0936 0.1257 0.0969 0.0659 0.0439 0.0807 0.0476 0.1374 0.0778 0.1838 0.0895

LLM2Rec 0.1170 0.0976 0.1289 0.1006 0.0708 0.0503 0.0850 0.0539 0.1530 0.0897 0.2017 0.1020
%Improv. 3.51% 4.26% 2.56% 3.89% 7.39% 14.56% 5.32% 13.04% 1.45% 4.37% 0.83% 3.73%

For general text embedding models, the latest methods surpass
earlier models like BERT due to their enhanced semantic under-
standing capabilities. In contrast, recommendation-specific embed-
ding models such as BLAIR and EasyRec benefit from learning
CF signals, allowing them to outperform general text embeddings

like BERT. However, their language backbones with limited seman-
tic understanding constrain their effectiveness, resulting in lower
performance compared to more advanced models like BGE and
LLM2Vec. LLMEmb inherits the strong semantic understanding
of LLMs and further achieves performance gains by fine-tuning
on recommendation-specific tasks. These results demonstrate that
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Table 4: The ablation study of LLM2Rec.

Models
Games Sports Goodreads

R@10 N@10 R@10 N@10 R@10 N@10

Casual 0.0373 0.0201 0.0167 0.0091 0.0724 0.0375
Bidirectional 0.0740 0.0407 0.1079 0.0854 0.1424 0.0790

CSFT 0.0795 0.0472 0.1119 0.0935 0.1513 0.0882
IEM1 (MNTP) 0.0801 0.0477 0.1147 0.0956 0.1564 0.0916
IEM2 (IC) 0.0865 0.0521 0.1170 0.0976 0.1530 0.0897

both comprehensive semantic comprehension and CF awareness
are crucial for improving downstream recommenders, underscor-
ing the importance of developing a powerful embedding model
integrating both aspects.

4.3 Ablation Study (RQ2)
To analyze the contribution of each training stage to the perfor-
mance of LLM2Rec, we conduct an ablation study using the strongest
sequential recommender, SASRec, as the fixed downstream model.
The evaluation covers one in-domain dataset (Games) and two out-
of-domain datasets (Sports and Goodreads). The detailed results
are presented in Table 4. “Causal” and “Bidirectional” present the
performance of our backbone LLM, Qwen2-0.5B, under different
embedding generation strategies. In the causal setting, item embed-
dings are derived from the last hidden state of the [EOS] tokenwhile
maintaining the causal attention mask. In the bidirectional setting,
embeddings are obtained by average pooling the last hidden states
of all tokens in the item title. Experimental results demonstrate that
bidirectional attention consistently outperforms causal attention.
While causal attention is beneficial for language generation tasks
by conditioning later tokens on prior ones, it proves suboptimal for
embedding generation, as it limits the model’s ability to capture
comprehensive contextual representations.

The bottom half of Table 4 highlights the impact of each train-
ing stage on the performance of LLM2Rec. “CSFT” represents the
model’s performance after Collaborative Supervised Fine-Tuning
(CSFT). Item-level Embedding Modeling (IEM) consists of two steps:
“IEM1 (MNTP)” indicates the performance after additional Masked
Next-Token Prediction (MNTP) training, and IEM2 (IC) reflects
the performance after item-level contrastive learning (IC), which
ultimately results in LLM2Rec. Experimental results indicate that
collaborative supervised fine-tuning (CSFT) contributes the most
significant performance improvement across both in-domain and
out-of-domain datasets, highlighting the importance of capturing
CF signals in sequential recommendation and also demonstrating
the effectiveness of CSFT. In comparison, masked next-token predic-
tion (MNTP) provides a smaller yet consistent performance boost,
suggesting its role in improving bidirectional contextual represen-
tations. Finally, item-level contrastive learning further enhances
performance, yielding substantial gains on in-domain datasets and
moderate improvements on out-of-domain datasets.

4.4 Model Study (RQ3)
4.4.1 Effect of Different LLM Backbones. As LLM2Rec builds upon
pre-trained LLMs, the choice of backbone naturally affects its per-
formance. To examine this effect, we evaluate LLM2Rec on various

Table 5: Effect of mixed training dataset. ID is short for in-
domain and OOD is short for out-of-domain.

Models
Games (ID) Sports (OOD) Goodreads (OOD)

R@10 N@10 R@10 N@10 R@10 N@10

Backbone 0.0740 0.0407 0.1079 0.0854 0.1424 0.0790

Single 0.0857 0.0500 0.1099 0.0921 0.1473 0.0833
%Improv. 15.81% 22.90% 1.83% 7.76% 3.41% 5.44%

Mix-2 0.0856 0.0517 0.1111 0.0936 0.1493 0.0862
%Improv. 15.66% 26.84% 2.96% 9.52% 4.82% 9.12%

Mix-6 0.0795 0.0472 0.1119 0.0935 0.1513 0.0882
%Improv. 7.38% 15.80% 3.68% 9.45% 6.20% 11.66%

LLM backbones. Specifically, for each LLM backbone, we evaluate
the quality of the generated embedding after two training stages of
LLM2Rec, i.e., the collaborative supervised fine-tuning (LLM2Rec-
Stage1) and item-level embedding modeling (LLM2Rec-Stage2). To
provide a comprehensive comparison, we further include two base-
line methods: LLM2Vec, a state-of-the-art general-purpose embed-
ding model, and LLMEmb, a sequential recommendation-specific
embedding model. Since LLM2Rec, LLM2Vec, and LLMEmb are all
fine-tuned from a pre-trained LLM, we compare their performance
under the same backbone LLM. All embeddings are integrated into
the same downstream recommender, SASRec, and tested on both the
in-domain dataset (Games) and the out-of-domain dataset (Sports).

As the results shown in Figure 4, models built upon stronger
LLM backbones generally achieve better performance on both the
in-domain (Games) and out-of-domain (Sports) datasets. This trend
is consistent with expectations, as larger and more powerful LLMs
tend to possess stronger semantic understanding and greater gener-
alization capabilities. Across all evaluated backbones, both training
stages of LLM2Rec contribute to consistent improvements in the ef-
fectiveness of the generated embeddings for recommendation tasks.
Notably, LLM2Rec consistently outperforms the general-purpose
embedding baseline, LLM2Rec, on a variety of LLM backbones.
Furthermore, after completing both stages of training, LLM2Rec
(LLM2Rec-Stage2) also surpasses the recommendation-specific em-
bedding method, LLMEmb. The results on four different LLMs con-
firm the effectiveness of LLM2Rec and its robustness in generalizing
across different LLM backbones. It is also notable that LLM2Rec
achieves competitive performance when built on the lightweight
Qwen2-0.5B model, offering a favorable trade-off between effec-
tiveness and computational cost compared to larger backbones.

4.4.2 Effect of Mixed Dataset Training. Our proposed LLM2Rec is
pre-trained on a mixture of six datasets spanning different cate-
gories. To examine the impact of mixed pre-training datasets, we
evaluate embedding models trained on a single dataset, a mixture
of two datasets, and a mixture of six datasets. For simplicity, we
omit the item-level embedding modeling steps (masked next-token
prediction and item-level contrastive learning), and all results are
reported using SASRec as the fixed downstream recommender. We
define four settings: “Backbone”, which represents the base perfor-
mance of the backbone LLM, Qwen2-0.5B; “Single”, where themodel
is pre-trained only on the Games dataset; “Mix-2”, pre-trained on a
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Figure 4: Performance comparison of embedding methods across different LLM backbones.

combination of Games and Arts; and “Mix-6”, which corresponds
to LLM2Rec, pre-trained on all six datasets. Among the three eval-
uated datasets, Games is in-domain for all models, whereas Sports
and Goodreads are out-of-domain, as they are excluded from the
pre-training datasets.

Experimental results as shown in Table 5 indicate that pre-
training on a diverse set of datasets improves the model’s ability
to generalize to unseen domains, leading to more robust embed-
dings across different datasets. Meanwhile, for in-domain data,
pre-training on a concentrated subset of item categories yields
higher accuracy, suggesting that category-specific pre-training can
be beneficial for domain-specific recommendations.

4.4.3 Efficiency Analysis. In addition to effectiveness, the efficiency
of embedding models is crucial for practical deployment in sequen-
tial recommender systems. We measure the inference time required
by each embedding model to encode all item titles in the Games
dataset (comprising 9,517 items) on a single Nvidia A40 GPU. The
results are shown in Figure 5. The vertical axis represents the to-
tal inference time, while the horizontal axis shows the Recall@10
performance of SASRec under different embedding models.

The smallest embedding models, BERT and BLAIR, take the
shortest inference times, with BLAIR achieving a notable perfor-
mance improvement over BERT due to its specialized fine-tuning
for recommendation tasks. The latest embedding models generally
deliver better performance, driven by enhanced semantic under-
standing, but at the cost of higher computational overhead. Larger
models, such as GTE, which leverages a 7B-parameter backbone,
suffer from significantly increased inference time. LLM2Vec and
LLMEmb reported in Figure 5 are built on the lightweight yet pow-
erful Qwen2-0.5B model. They achieve strong performance with
relatively low computational cost, demonstrating a favorable bal-
ance between effectiveness and efficiency. Our proposed LLM2Rec
inherits the efficiency of Qwen2-0.5B while enhancing performance
through recommendation-specific fine-tuning. Overall, LLM2Rec
generates more effective embeddings for downstream sequential
recommenders while maintaining practical inference efficiency.

5 Conclusion & Discussion
In this work, we introduced LLM2Rec, a specialized embedding
model for sequential recommendation that incorporates both the
comprehensive semantic understanding of LLMs and awareness of
CF signals. General embeddingmodels fail to capture the latent item
relationships, i.e., CF signals, resulting in suboptimal performance
in sequential recommendation tasks. LLM2Rec bridges this gap by
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Figure 5: Comparison of inference time and performance of
different embedding models.

leveraging a two-stage training framework including collaborative
supervised fine-tuning (CSFT) and item-level embedding modeling
(IEM). CSFT fine-tunes the LLM to capture the CF signals with user
interaction sequences and IEM further transforms the decoder-only
LLM into embeddingmodel focusing on item embedding generation
for sequential recommendation. Extensive experiments on real-
world datasets demonstrate that LLM2Rec consistently outperforms
strong baseline embedding models across both in-domain and out-
of-domain recommendation tasks. Notably, it achieves significant
improvements while maintaining computational efficiency. Our
results highlight the potential of LLMs as powerful embedding
models for sequential recommendation.

While LLM2Rec demonstrates strong effectiveness, several promis-
ing research directions remain. First, real-world user interaction
data from e-commerce platforms often contain substantial noise.
Enhancing robustness through noise filtering or data augmentation
could further improve LLM2Rec. Second, due to computational con-
straints, this study evaluates LLM2Rec on LLM backbones with up
to 3B parameters. Despite its effectiveness, exploring larger-scale
LLMs under the LLM2Rec framework could unlock further per-
formance gains. Third, experimental results indicate that training
on mixed datasets enhances generalization. Constructing a more
diverse dataset with items from multiple platforms and categories
could improve generalization, advancing toward a universal recom-
mender system trained once and deployed widely.
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A Implemental Details
A.1 Training Pseudo-code.
Here we provide the training pseudo-code, indicating that LLM2Rec
is sequentially optimized with different stages, as shown in Algo-
rithm 1. The training starts from collaborative supervised fine-
tuning to item-level embedding modeling. Due to the different
objectives, we employ different sampling at different stages. Specif-
ically, the user interaction sequence and the next item pairs consti-
tute the samples for the collaborative supervised fine-tuning, while
single items serve for the item-level embedding modeling. Addi-
tionally, during the item-level contrastive learning, we augment
the items to two views, making it an extra sampling that differs
from the training with MNTP objective.

Algorithm 1 Training Strategy for LLM2Rec

Require: Training datasetDtrain, pretrained LLM E with parame-
ter 𝜃 , learning rate 𝜂, epochs 𝐸, temperature 𝜏

1: Initialization: Load pretrained LLM E, Initialize optimizer
2: Stage 1: Collaborative Supervised Fine-tuning
3: for epoch = 1 to 𝐸1 do
4: for each batch {(𝑋𝑢 , 𝑖𝑁𝑢+1}) ⊂ Dtrain do
5: Encode item sequence: t𝑢 ← Tokenize(𝑋𝑢 )
6: Compute loss LCSFT in Equation 2
7: Update model parameters: 𝜃1 ← 𝜃 − 𝜂∇𝜃LCSFT
8: end for
9: end for
10: Stage 2: Item-level Embedding Modeling
11: Step 2.1: Reform LLM with Bidirectional Attention
12: for epoch = 1 to 𝐸2 do
13: for each batch {𝑖} ⊂ I do
14: Tokenize item description: t𝑖
15: Randomly mask tokens for MNTP
16: Compute loss LMNTP in Equation 3
17: Update model parameters: 𝜃 ′ ← 𝜃 − 𝜂∇𝜃1LMNTP
18: end for
19: end for
20: Step 2.2: Item-level Contrastive Learning
21: for epoch = 1 to 𝐸3 do
22: for each batch {𝑖} ⊂ I do
23: Generate two masked views: t̃1

𝑖
, t̃2
𝑖

24: Compute item embeddings: z1
𝑖
= E(t̃1

𝑖
), z2

𝑖
= E(t̃2

𝑖
)

25: Compute loss LIC in Equation 4
26: Update model parameters: 𝜃 ← 𝜃 ′ − 𝜂∇𝜃 ′LIC
27: end for
28: end for
29: return LLM2Rec E with parameter 𝜃 .

A.2 Baselines and Sequential Recommenders.
This section provides a brief introduction to each baseline embed-
ding model used in our experiments.
• BERT [17] is a milestone embedding model pre-trained using
mask languagemodeling and next sentence prediction. Built upon
the transformer architecture with bidirectional attention, BERT
effectively captures contextual dependencies in text, enabling
more accurate semantic representations.
• BGE [21] is a state-of-the-art embedding model built on a bidirec-
tional Transformer architecture. Pre-trained on diverse datasets,
it excels in retrieval and reranking tasks. In this paper, we use
the pre-trained model BAAI/bge-large-en-v1.5 from the Hugging
Face repository.
• GTE [24] transforms the LLM into an embedding model with
multi-stage contrastive learning. Specifically, we select the pre-
trained model Alibaba-NLP/gte-Qwen2-7B-instruct which ex-
hibits the highest performance onMassive Text Embedding Bench-
mark (MTEB) [37].
• LLM2Vec [3] aims to effectively adapt pre-trained LLMs into
embedding models through sentence-level adaptations. In this pa-
per, we use Qwen2-0.5B as the backbone for LLM2Vec, ensuring
consistency with our proposed LLM2Rec.
• EasyRec [39] is a recommendation-specific embedding model
built on RoBERTa [32]. It leverages contrastive learning to cap-
ture collaborative filtering (CF) signals by aligning representa-
tions of user and item profiles.We load the pre-trained embedding
from Hugging Face repo hkuds/easyrec-roberta-large.
• BLAIR [13] is a recommendation-specific embedding model,
similar to EasyRec. It is pre-trained on a diverse collection of 33
Amazon datasets, comprising 3.08 × 107 data instances. In this
paper, we load the pre-trained model from Hugging Face repo
hyp1231/blair-roberta-base.
• LLMEmb [29] adopts attribute-level augmentation and uses con-
trastive learning as a primary training objective to improve se-
mantic understanding of LLM embeddings, particularly for repre-
senting the long-tail items. In this paper, we implement LLMEmb
using the same LLM backbone, Qwen2-0.5B, to ensure consis-
tency with LLM2Rec.
Two downstream sequential recommenders are used as evalua-

tion to the embedding models:
• GRU4Rec [12] utilizes GRU modules to capture sequential de-
pendencies within user interaction sequences. It is trained to
predict the next item in a user’s sequence based on previously
purchased items. We use the cross-entropy loss as optimization
objective during the training process.
• SASRec [15] is a transformer-based recommender widely used in
sequential recommendation. It leverages self-attention to capture
long-range dependencies in user interaction sequences, enhanc-
ing the accuracy of future interaction predictions. Cross-entropy
loss is used as the optimization objective.
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